Analysis of Selection of Unmanned Aircraft in Supporting Security Operations at Sea
Abstract
early detection is a crucial element in maintaining maritime security and preventing various threats at sea. In the context of maritime security operations, the use of unmanned aerial vehicles (UAVs) as a means of supporting early detection has attracted attention due to its ability to carry out extensive and real-time monitoring. However, selecting the right drone requires a systematic and objective approach. Therefore, this study aims to analyze the selection of unmanned aircraft to increase early detection in order to support security operations at sea using the Analytical Hierarchy Process (AHP) method. The AHP method is used to overcome complexity in the decision-making process by taking into account various relevant criteria and sub-criteria. Factors considered include the aircraft's technical capabilities, such as operational range, endurance and speed, as well as the sensor capabilities of the aircraft, including optical, infrared and radar cameras. Security and system reliability aspects are also a major consideration, including communication systems that can ensure fast and secure data transmission. In this study, the AHP-based assessment involved the participation of experts and stakeholders related to security operations at sea. They provide preferences and relative weights of each criterion to determine the priority and importance of each factor in the selection of unmanned aircraft. The results of the analysis show that the selection of suitable unmanned aircraft can increase the efficiency and effectiveness of security operations at sea with an emphasis on early detection. Unmanned aircraft that have superior technical capabilities, sophisticated sensors, and reliable communication systems are a priority in supporting security operations at sea
References
K. K. Vaigandla, S. Thatipamula, and R. K. Karne, “Investigation on Unmanned Aerial Vehicle (UAV): An Overview,” IRO J. Sustain. Wirel. Syst., vol. 4, no. 3, pp. 130–148, 2022, doi: 10.36548/jsws.2022.3.001.
C. Li et al., “A Siamese hybrid neural network framework for few-shot fault diagnosis of fixed-wing unmanned aerial vehicles,” J. Comput. Des. Eng., vol. 9, no. 4, pp. 1511–1524, 2022, doi: 10.1093/jcde/qwac070.
Nugraha, Brahma, and Arief, “Analisis Pemilihan Teknologi Pesawat Terbang Tanpa Awak ( PTTA ) dalam Pengumpulan Data Maritim,” J. Marit. Indones., vol. 9, no. 1, pp. 53–65, 2021.
V. Chamola, P. Kotesh, A. Agarwal, Naren, N. Gupta, and M. Guizani, “A Comprehensive Review of Unmanned Aerial Vehicle Attacks and Neutralization Techniques,” Ad Hoc Networks, vol. 111, no. September 2020, p. 102324, 2021, doi: 10.1016/j.adhoc.2020.102324.
J. Kim, S. Kim, C. Ju, and H. Il Son, “Unmanned aerial vehicles in agriculture: A review of perspective of platform, control, and applications,” IEEE Access, vol. 7, pp. 105100–105115, 2019, doi: 10.1109/ACCESS.2019.2932119.
Z. Zhang, J. Wu, J. Dai, and C. He, “Optimal path planning with modified A-Star algorithm for stealth unmanned aerial vehicles in 3D network radar environment,” Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng., vol. 236, no. 1, pp. 72–81, 2022, doi: 10.1177/09544100211007381.
I. Elkhrachy, “Accuracy Assessment of Low-Cost Unmanned Aerial Vehicle (UAV) Photogrammetry,” Alexandria Eng. J., vol. 60, no. 6, pp. 5579–5590, 2021, doi: 10.1016/j.aej.2021.04.011.
D. Iskandar, “Pemanfaatan Pesawat Terbang Tanpa Awak Untuk Menanggulangi Gangguan,” J. Strateg. dan Kampanye Militer, vol. 8, no. 2, p. 2022, 2022.
K. Ilham and R. Mukhaiyar, “Pergerakan Autonomous Pesawat Tanpa Awak Berdasarkan Tinggi Terbang Pesawat,” Ranah Res. J. Multidiscip. Res. Dev., vol. 3, no. 3, pp. 154–165, 2021, doi: 10.38035/rrj.v3i3.391.
A. U. Bayu, S. S. Hadi, R. B. Oktovianus, and G. Amperiawan, “KEMAMPUAN NASIONAL DALAM PENGEMBANGAN PESAWAT TERBANG TANPA AWAK KELAS MEDIUM ALTITUDE LONG ENDURANCE,” Nusant. J. Ilmu Pengetah. Sos., vol. 7, no. 2, pp. 408–420, 2020.
A. Sutopo, “Interoperability Pesawat Terbang Tanpa Awak Dan Kapal Perang Untuk Pengamanan Alur Laut Kepulauan Indonesia,” J. Strateg. dan Kampanye Militer, vol. 8, no. 2, p. 2022, 2022.
S. Anwar, “Pemanfaatan Pesawat Terbang Tanpa Awak untuk Pengamanan Perbatasan Kalimantan dan Dampaknya Terhadap Ketahanan Wilayah,” J. Ketahanan Nas., vol. 27, no. 3, p. 289, 2022, doi: 10.22146/jkn.69622.
M. Abdullah, Fauzi, and D. Apriyanto, “ANALISA PEMILIHAN KAPAL TANPA AWAK DALAM OPERASI TINDAKAN PERLAWANAN RANJAU ( TPR ) DENGAN,” vol. 6, no. 3, pp. 601–608, 2023.
K. Hidayat et al., “ANALISIS PEMILIHAN AIRFOIL PESAWAT TERBANG TANPA AWAK LSU-05 NG DENGAN MENGGUNAKAN ANALYTICAL HIERARCHY PROCESS,” J. Teknol. Dirgant., vol. 17, no. 2, p. 141, 2019, doi: 10.30536/j.jtd.2019.v17.a3161.
F. Septia Warga Negara and G. Thabrani, “Analisis Kualitas Pelayanan Maskapai Penerbangan Yang Menerapkan Strategi Lcc Dengan Metode Analytic Hierarchy Process (Studi Kasus: Lion Air, Air Asia Dan Citilink),” J. Prakt. Bisnis, vol. 4, no. 2, pp. 195–204, 2015.
Utomo, H. J. N., Irwantoro, I., Wasesa, S., Purwati, T., Sembiring, R., & Purwanto, A. (2023). Investigating The Role of Innovative Work Behavior, Organizational Trust, Perceived Organizational Support: An Empirical Study on SMEs Performance. Journal of Law and Sustainable Development, 11(2), e417. https://doi.org/10.55908/sdgs.v11i2.417
Purwanto, A., Purba, J.T., Bernarto, I., Sijabat, R. (2023b). The Role of Transformational Leadership, Organizational Citi-zenship Behavior, Innovative Work Behavior, Leader Member Exchange, Organizational Commitment. Quality Work Life and Digital Transformation on Private University Performance. Revista De Gestão Social E Ambiental, 17(4), e03365. https://doi.org/10.24857/rgsa.v17n427.
Purwanto, A., Purba, J.T., Bernarto, I., Sijabat, R.(2023).Investigating the role digital transformation and human resource management on the performance of the universities.International Journal of Data and Network Science,7(4), DOI: 10.5267/j.ijdns.2023.6.01128.
R. Elyarni, “Analisis SWOT Terhadap Strategi Pemasaran Layanan SAP Express pada PT. SAP,” J. Metris, vol. 17, pp. 81–88, 2016.
A. Sazrhi et al., “Strategy Master Of Advanced Composite Technology To Support Self Development Of Fighter Aircraft,” J. Teknol. Daya Gerak, vol. Vol 3, No, pp. 25–50, 2020, [Online]. Available: https://www.kemhan.go.id/puskompublik/201