Analisa Ekonomi Pemanfaatan Gas LNG Sebagai Bahan Bakar Penggerak Kapal Ferry
Abstrak
Sebagai salah satu sumber bahan bakar untuk penggerak kapal, solar merupakan bahan bakar pokok yang selama ini di gunakan pada mesin diesel pada sebuah kapal dimana keberadaanya sudah semakin terbatas. Sedangkan cadangan natural gas di indonesia pada saat ini masih relatif lebih banyak jika di bandingkan dengan bahan bakar fosil. Untuk itu pada studi ini kita mencoba membahas analisa ekonomi penggunaan solar sebagai bahan bakar utama dan gabungan solar dengan LNG (Liqufied Natural Gas) Dual Fuel pada kapal ferry di Indonesia. Dimana hasil analisa ini dapat di gunakan sebagai pembanding pemanfaatan energi keduanya, jika di lihat dari sisi ekonomi penggunaanya. Penggantian solar dengan duel fuel LNG dapat menghemat 74,54% biaya bahan bakar selama 12 jam operasi kapal ferry.
Referensi
Marsetio, “Sea Power Indonesia.” Unhan, Jakarta, pp. 1–148, 2014.
Marsetio, Aktualisasi Peran Pengawasan Wilayah Laut Dalam Mendukung Pembangunan Indonesia Sebagai Negara Maritim Yang Tangguh, 2013th ed. 2013.
G. 2030, “Global Marine Technology Trends 2030 Global Marine Technology Trends 2030”.
J. Herdzik, “LNG as a marine fuel - possibilities and problem,” J. KONES, vol. 18, no. 2, pp. 169–176, 2011.
M. A. Arefin, M. N. Nabi, M. W. Akram, M. T. Islam, and M. W. Chowdhury, “A review on liquefied natural gas as fuels for dual fuel engines: Opportunities, challenges and responses,” Energies, vol. 13, no. 22, 2020, doi: 10.3390/en13226127.
Y. Siahaya, “Manfaat Pemakaian LNG Sebagai Bahan Bakar Utama Mesin Kapal Benefits of Use LNG as Material Main Engine Fuel Ship,” Pen Transla, vol. 16, no. 03, pp. 87–92, 2014.
N. R. Ammar, “Environmental and cost-effectiveness comparison of dual fuel propulsion options for emissions reduction onboard lng carriers,” Brodogradnja, vol. 70, no. 3, pp. 61–77, 2019, doi: 10.21278/brod70304.
B. Zhang, Y. Jiang, and Y. Chen, “Research on Calibration, Economy and PM Emissions of a Marine LNG–Diesel Dual‐Fuel Engine,” J. Mar. Sci. Eng., vol. 10, no. 2, 2022, doi: 10.3390/jmse10020239.
M. A. Prakoso, “Studi Kelayakan Penentuan Umur Kapal Penumpang Untuk Konversi Diesel Engine Menjadi Dual Fuel Diesel Engine Dengan Metode Dinamika System (System Dynamics),” p. 173, 2017, [Online]. Available: http://repository.its.ac.id/45476/
H. Palebangan, “Analisis Kapal Berbahan Bakar LNG sebagai Marine Fuel dalam Mengurangi Emisi Gas Buang Terhadap Lalu Lintas Kapal di Pelabuhan Bitung,” War. Penelit. Perhub., vol. 31, no. 1, pp. 25–34, 2019, doi: 10.25104/warlit.v31i1.912.
A. A. Masroeri, “Technical and Economical Analysis of LCT (Landing Craft Tank) Vessel Conversion into NonConventional LNG (Liquid Natural Gas) Carriers,” no. Msmi, pp. 322–329, 2018, doi: 10.23977/msmi.2018.82635.
G. B. B. Pratama and H. A. Kurniawati, “Desain Dual Fuel LNG Carrier untuk Suplai Bahan Bakar LNG di Alur Pelayaran Barat Surabaya (APBS),” J. Tek. ITS, vol. 6, no. 2, pp. 2–7, 2017, doi: 10.12962/j23373539.v6i2.23639.
C. Wan, X. Yan, D. Zhang, J. Shi, and S. Fu, “Facilitating AHP-TOPSIS method for reliability analysis of a marine LNG-Diesel Dual Fuel Engine,” Int. J. Performability Eng., vol. 10, no. 5, pp. 453–466, 2014.
G. H. Tzeng, C. H. Chiang, and C. W. Li, “Evaluating intertwined effects in e-learning programs: A novel hybrid MCDM model based on factor analysis and DEMATEL,” Expert Syst. Appl., vol. 32, no. 4, pp. 1028–1044, 2007, doi: 10.1016/j.eswa.2006.02.004.
A. Boretti, “Numerical analysis of high-pressure direct injection dual-fuel diesel-liquefied natural gas (LNG) engines,” Processes, vol. 8, no. 3, pp. 1–22, 2020, doi: 10.3390/pr8030261.
E. Stefana, F. Marciano, and M. Alberti, “Qualitative risk assessment of a Dual Fuel (LNG-Diesel) system for heavy-duty trucks,” J. Loss Prev. Process Ind., vol. 39, pp. 39–58, 2016, doi: 10.1016/j.jlp.2015.11.007.
M. A. Prakoso, “Studi Kelayakan Penentuan Umur Kapal Penumpang Untuk Konversi Diesel Engine Menjadi Dual Fuel Diesel Engine Dengan Metode Dinamika System (System Dynamics),” p. 173, 2017.
K. Cheenkachorn, C. Poompipatpong, and C. G. Ho, “Performance and emissions of a heavy-duty diesel engine fuelled with diesel and LNG (liquid natural gas),” Energy, vol. 53, pp. 52–57, 2013, doi: 10.1016/j.energy.2013.02.027.
E. Lindstad, G. S. Eskeland, A. Rialland, and A. Valland, “Decarbonizing maritime transport: The importance of engine technology and regulations for LNG to serve as a transition fuel,” Sustain., vol. 12, no. 21, pp. 1–19, 2020, doi: 10.3390/su12218793.
V. Mrzljak, I. Poljak, and V. Medica-Viola, “Dual fuel consumption and efficiency of marine steam generators for the propulsion of LNG carrier,” Appl. Therm. Eng., vol. 119, pp. 331–346, 2017, doi: 10.1016/j.applthermaleng.2017.03.078.
Z. Tian, Y. Yue, Y. Zhang, B. Gu, and W. Gao, “Multi-objective thermo-economic optimization of a combined organic Rankine cycle (ORC) system based on waste heat of dual fuel marine engine and LNG cold energy recovery,” Energies, vol. 16, no. 3, 2020, doi: 10.3390/en13061397.
John B. Heywood, “heywood_-internal_combustion_engines_fundamentals.pdf.” pp. 1–481.
Klaus Mollenhauer _ Helmut Tschoeke, Handbook of Diesel Engines. Springer Heidelberg Dordrecht London New York, 20189. doi: 10.1007/978-3-540-89083-6.
Doug Woodyard, “Marine Diesel Engines and Gas Turbines,” 2004, doi: ISBN 0 7506 5846 0.
B. Challen and R. Baranescu, Diesel engine reference book, vol. 14, no. 3. 1987. doi: 10.1016/0378-3804(87)90022-2.